- second countable space
- N2-avaruus
English-Finnish mathematical dictionary. 2011.
English-Finnish mathematical dictionary. 2011.
Second-countable space — In topology, a second countable space, also called a completely separable space, is a topological space satisfying the second axiom of countability. A space is said to be second countable if its topology has a countable base. More explicitly,… … Wikipedia
First-countable space — In topology, a branch of mathematics, a first countable space is a topological space satisfying the first axiom of countability . Specifically, a space, X , is said to be first countable if each point has a countable neighbourhood basis (local… … Wikipedia
second-countable — adjective Such that its topology has a countable base, said of a topological space … Wiktionary
Space-filling curve — 3 iterations of a Peano curve construction, whose limit is a space filling curve. In mathematical analysis, a space filling curve is a curve whose range contains the entire 2 dimensional unit square (or more generally an N dimensional hypercube) … Wikipedia
Separable space — In mathematics a topological space is called separable if it contains a countable dense subset; that is, there exists a sequence { x n } {n=1}^{infty} of elements of the space such that every nonempty open subset of the space contains at least… … Wikipedia
Lindelöf space — In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. A Lindelöf space is a weakening of the more commonly used notion of compactness , which requires the existence of a finite subcover.A… … Wikipedia
Paracompact space — In mathematics, a paracompact space is a topological space in which every open cover admits a locally finite open refinement. Paracompact spaces are sometimes also required to be Hausdorff. Paracompact spaces were introduced by Dieudonné (1944).… … Wikipedia
Baire space (set theory) — In mathematics field of set theory, especially descriptive set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology. This space is commonly used in descriptive set theory, to the extent that its… … Wikipedia
Normal space — Separation Axioms in Topological Spaces Kolmogorov (T0) version T0 | T1 | T2 | T2½ | completely T2 T3 | T3½ | T4 | T5 | T6 In topology and related branches of mathematics, a no … Wikipedia
Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia